Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.

نویسندگان

  • Weixuan Ding
  • Douglas I Stewart
  • Paul N Humphreys
  • Simon P Rout
  • Ian T Burke
چکیده

Cr(VI) is an important contaminant found at sites where chromium ore processing residue (COPR) is deposited. No low cost treatment exists for Cr(VI) leaching from such sites. This study investigated the mechanism of interaction of alkaline Cr(VI)-containing leachate with an Fe(II)-containing organic matter rich soil beneath the waste. The soil currently contains 0.8% Cr, shown to be present as Cr(III)(OH)3 in EXAFS analysis. Lab tests confirmed that the reaction of Cr(VI) in site leachate with Fe(II) present in the soil was stoichiometrically correct for a reductive mechanism of Cr accumulation. However, the amount of Fe(II) present in the soil was insufficient to maintain long term Cr(VI) reduction at historic infiltration rates. The soil contains a population of bacteria dominated by a Mangroviflexus-like species, that is closely related to known fermentative bacteria, and a community capable of sustaining Fe(III) reduction in alkaline culture. It is therefore likely that in situ fermentative metabolism supported by organic matter in the soil produces more labile organic substrates (lactate was detected) that support microbial Fe(III) reduction. It is therefore suggested that addition of solid phase organic matter to soils adjacent to COPR may reduce the long term spread of Cr(VI) in the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites

A serial enrichment culture has been grown in an alkaline Fe(III)-citrate-containing medium from an initial inoculum from a soil layer beneath a chromium ore processing residue (COPR) disposal site where Cr(III) is accumulating from Cr(VI) containing leachate. This culture is dominated by two bacterial genera in the order Clostridiales, Tissierella, and an unnamed Clostridium XI subgroup. This ...

متن کامل

Reduction of chromium toxicity by applying various soil amendments in artificially contaminated soil

Six soil amendments including municipal solid waste compost (MSWC), coal fly ash (CFA), rice husk biochar prepared at 300°C (B300) and 600°C (B600), zerovalent iron (Fe0), and zerovalent manganese (Mn0) were evaluated to determine their ability to reduce mobility of chromium (Cr) in a Cr-spiked soil. The Cr-spiked soil samples were separately incubated with selected amendments at 2 and 5% [weig...

متن کامل

Investigation of the Efficiency of Various Concentration of Organic Compounds in the Bioaugmentation Process for Reduction of Hexavalent Chromium in Soil

Background: Cr (VI) is a highly toxic and carcinogenic contaminant and that are used in the steel industry and other chemical industries such as the leather industry, pigment production, electroplating of metals and the production of anticorrosive compounds. Its waste enters the environment and subsequently enters the water and food sources. Therefore, in order to protect the environment as wel...

متن کامل

Optimization of Cr(VI) Photocatalytic Reduction by UV/TiO2 : Influence of Inorganic and Organic species and Kinetic Study

Background & Aims of the Study: Chromium is widely detected in surface waters and underground waters, which usually appear as Cr(VI), and Cr(III), at sites associated with industrial activities. Cr(VI), in effluent streams with a high level of mobility and notorious mutagenic and carcinogenic toxicity; thus Cr(III) does not have much mobility in soil. So, converting it into less h...

متن کامل

Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue.

Chromite ore processing residue (COPR), derived from the so-called high lime processing of chromite ore, contains high levels of Cr(III) and Cr(VI) and has a pH between 11 and 12. Ferrous sulfate, which is used for remediation of Cr(VI) contamination in wastewater and soils via reduction to Cr(III) and subsequent precipitation of iron(III)/chromium(III) hydroxide, has also been proposed for rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 541  شماره 

صفحات  -

تاریخ انتشار 2016